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Abstract

It is well known that the spectral sensitivities (SS) for color
imaging devices should satisfy the Luther condition which
requires SS to be linear combinations of the CIE color
matching functions. In practice, it is difficult to construct an
SS exactly to meet this condition. Some quality factors such
as g-factor for single SS by Neugebauer and y-factor for a set
of SS by Vora et al. were introduced in order to describe the
deviation of S§ from their nearest color mixture curves. In
this paper, a simple method is introduced to implement an
evaluation platform for the above two quality factors. A
series of hypothetical spectral sensitivities are constructed
with cubic spline functions with shape and peak position of
the SS parametrically varied. The evaluation platform is
used to optimize these S parameters to obtain a maximum
quality factor. Furthermore, the improvement of quality
factor by adding a fourth SS is discussed in the paper as
well.

Introduction

Capturing color images with digital camera is widely
spreading. The principle of such a camera is usually a
charge-coupled device or complementary metal-oxide-
semiconductor (CCD/CMOS) sensor array with a set of
filters before it. Human visual responses to color stimuli
have been determined by psychophysical experiments and are
officially recommended as color matching functions by the
Commission Internationale de [I'Eclairage (CIE). It
characterizes spectral distributions of object colors by
tristimulus values since the human eye has three types of
cones with different spectral sensitivities. Most imaging
systems are therefore set up with three channels and the
device sensitivities are initially designed to mimic human
visual system.

The spectral sensitivity evaluation and design problem
has been studied before. Ohta started the evaluation and
optimization of spectral sensitivities in subtractive color
photography.'®!! The spectral sensitivities for color imaging
devices (digital cameras, color scanners etc.) should satisfy
the Luther condition, that is, the spectral sensitivities need
not be exact duplicates of the color-matching functions but

need be only a nonsingular transformation of them. In
practice, it is not always possible to manufacture filters that
satisfy Luther condition due to the physical limitations of
fabricating process. Measurement noise also plays an
important role and will degrade the color accuracy even when
spectral sensitivities fulfil Luther condition. A measure of
goodness or quality factor for evaluating and designing
spectral sensitivities for color imaging devices is therefore
desirable.

The first quality factor, Q-factor, proposed by
Neugebauer, is limited to the evaluation of single filter.'
Lately, Vora and Trussell extended the quality factor to filter
sets with an arbitrary number of filters.” This factor, u-
factor, describes the difference between the orthonormal
subspaces of color matching functions and the spectral
sensitivity space. These measures can all be related to a
mean-squared error metric in CIEXYZ space. Recently,
Wolski et al’ proposed the use of local linearization of
CIELAB space to reduce the computational complexity with
preserving the desirable property of perceptual uniformity.
Sharma and Trussell* presented a new figure of merit for
color scanners, which is also based on an error metric in
linearized CIELAB space but incorporates a model for
measurement noise. It has high degree of perceptual
relevance and also accounts for noise performance of different
filters.

Tajima® proposed a totally new quality factor (“T-
factor”) without satisfying Luther condition by taking
account of the object color spectral characteristics. His
metric is based on that each object spectral characteristic can
be restored from three sensor signals due to the fact that
almost all object spectral reflectance can be reconstructed by
three or four principal components. Then accurate
tristimulus values (XYZ) are estimated from the restored
object spectral reflectance and known color-matching
functions.

It is still arguable that the spectra of object color can be
satisfactorily restored by only three or four sensor
measurements. Since most cameras use only three channels
and colorimetric matching is still the goal of most imaging
devices with tradeoff of cost, we will only discuss the g¢-
factor and p-factor in our paper. Furthermore, the approach
used in the paper is methodically applicable when we
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consider some additional practical issues, such as noise,
multi-illuminant color correction etc.

The higher the p-factor for the imaging device, the more
accurate color reproduction is expected. One approach to
improve the color accuracy other than satisfying Luther
condition with three channels is to use an increased number
of color channels. As the number of color filters is
increased, additional information about the object color is
obtained, but cost and fabrication difficulty is also increased.
Hence four-channel is a good tradeoff. Our paper
demonstrated a method to compute the optimal transmittance
of a fourth filter by maximizing the total u-factor of the
system dramatically.

In this paper, at first, we addressed the hypothetical
spectral sensitivity to be used. The hypothetical spectral
sensitivity function is modeled as smooth cubic spline
functions with single peak, which is proposed first by Ohta
1l We discussed the meaning of g-factor and u-factor
through least square approach and evaluated hypothetical
spectral sensitivities by these criteria. We then optimized a
fourth spectral sensitivity with constraints to maximize the
U-factor of the color imaging system.

In our paper, we use finite dimensional representations
of all continuous spectral functions. All spectral
distributions are sampled at 10am intervals from 400nm to
700nm and represented as 31-element column vectors.

The Hypothetical Spectral Sensitivity

We define the spectral sensitivity of color imaging systems
as the product of the spectral sensitivity of imaging device
and the transmittance of the filter. The hypothetical spectral
sensitivities formed by the combination of cubic spline
functions were widely used by N. Ohta to simulate the
practical spectral sensitivity in color photography.'" In
general, the spectral sensitivity is assumed to be a smooth
single-peaked curve in visible range with nonnegative value
of no more than one. The peak position and width vary
considerably for real spectral sensitivities in color
reproduction, however they can be simulated by a
combination of smooth cubic spline functions for instance
peak position at A=A, written as:

O
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0 A= 2g|2 2w

where 2w is the width of the cubic spline function. For
example, Figure 1 shows a spectral sensitivity function
whose peak locates at 550nm and width 2w is 80nm.
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Figure 1. Typical hypothetical spectral sensitivity

Q-Factor of Spectral Sensitivity

In measuring colors a light sensitive receiver is required
whose spectral response is equivalent to color matching
functions (cmf). But in many cases, this is not usually
fulfilled owing either to imperfections of color filters used or
to other conflicting conditions imposed on the filters. In
particular, it is difficult to construct designed scanning ss
exactly, and any errors in the construction will change the
space spanned by the spectral sensitivities, resulting in an
error in the measurement of the expected projection. This
error will lead to the error in the reproduction. This error
will occur even if the measurements are noise free in all
other respects. A compromise is required and it would be of
great help to have a method of evaluating the deviation of a
ss curve from the nearest cmf.

Let Xx(4),y(A),z(4) be the CIE color matching
functions, for convenience, we define A=[ x(1),¥(1),z(1)] as
the human visual subspace (HVSS). In an attempt to
measure the goodness of SS, Neugebauer’s g-factor for an
SS m can be defined as following:

Assume m can be mostly approximated by the linear
combination of cmfs (Af), where fis a 3x1 vector, that is,

min"Af - m||2F

where the Frobenius norm

Ixl, = 3] [
i=1 j=1

for matrix X € R™" This is a least-square problem, and we
can obtain f= (ATA)" A"m with pseudo inverse knowledge.
Thus the residue
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which is Neugebauer’s g factor of spectral sensitivity m.
As an extreme case, for example, when spectral

sensitivity m(i) is a &-function peak at A, belonging to
(400nm, 700nm), that is, m(i) = (0,0,...,1,...0)", where i is
the position of / in the N-vector. We can obtain the
corresponding g-factor as diag(A(A’A)"A”,i), which is the i™
diagonal element of the matrix (A(A"A)'A”. Figure 2 shows
the g-factors of a series of spectral sensitivities m(i) where i
changes from 1 to N. The g-factor curve presents three peaks
at about 450nm, 540nm and 600nm with corresponding g-
factors 0.2263, 0.1756 and 0.1858. Comparatively, the g-
factor of full-pass spectral sensitivity m(i) = (1,1,...,1,...,1)"
is about 0.7224.
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Figure 2. g-factor of 6-functions using CIE 2 cmf

Notice that 0 < g(m) < 1, and the closer the value of
q(m) to unity, the better the color-scanning ss m performs in
color reproduction. If the value of g(m) is small compared
with unity, the filter measurement does not give much
information about the measured signal, and hence the ss is
not appropriate for color scanning. The ¢g-factor is a
reasonable quality measure for spectral sensitivities not in
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the HVSS, because llmll* (1 — g(m)) is the square of the
Euclidean distance of m from HVSS as we derived above.
Now we evaluate the g-factors of the hypothetical
spectral sensitivity function. We let the peak position A, of
the cubic spline curve changes from 400nm to 700nm by
10nm (31 different positions), and the half width w changes
from 10nm to 90nm by 20nm (5 different widths). In each
combination, we calculated the corresponding g-factor.
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Figure 3. q factor of hypothetical spectral sensitivities with
different peak A, and width 2w
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Figure 4. The effect of width on maximum q factor

Figure 3 shows how the g-factors change as we change
the peak position A, and the width variable w of the
hypothetical spectral sensitivity. In the figure, when w is
not so large, for example, w<70nm, each curve gives a
series of varying g factors and there are 3 obvious peaks of g
factors. The wavelength positions of SS with maximal ¢-
factors are almost consistently located at 450nm, 540nm and
600nm.
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In these wavelength positions, there exists some
optimal width that maximizes the g-factor to near one. We
can find the optimal width is about 40~60nm. Figure 4
shows how the maximum g-factor changes with width.
When the width goes to large enough, say 100nm, the three
peaks of ¢ factor disappear and the curve becomes flat. On
the contrary, the g-factor in the middle part of the curve is
not very small but changes slowly along wavelength, so it
is not optimal to choose very wide spectral sensitivity in
color reproduction. In fact, when the width is small enough,
it can be modeled as a d-function, while it gets wide enough,
it is a full-pass function. So the curve is very similar to
Figure 2 when width is small and the curve becomes flat
when it is large. In a limitation condition when w—eo, as
SS is like full-pass spectral sensitivity, the g-factor at any
position is about 0.7.

u-Factor of a Set of Spectral Sensitivities

A major disadvantage of the ¢ factor is that it was designed
to evaluate only single §S. A measure that extends the idea
of the g-factor to evaluate a set of color-scanning spectral
sensitivities would be useful.

Another disadvantage of the g factor is that it cannot be
used to evaluate set of more than three spectral sensitivities.
Current trends show that more than three spectral
sensitivities may be used to improve the quality of the color
reproduction. First, in many cases, three parameters are not
enough to define sufficiently the visual stimulus of an N-
dimensional for color correction. Second, the constraint of
feasibility on the spectral sensitivities might imply that no
set of three feasible spectral sensitivities could span the
HVSS, although a set of four feasible spectral sensitivities
could be constructed so that the required projection would be
obtained. When more than three parameters (four scanning
spectral sensitivities, for example) are necessary, the g factor
is not an effective measure of the goodness. For example,
suppose that {s,,5,,55,5,} is a set of scanning spectral
sensitivities. It is possible that the HVSS is contained in
the span of the set of four spectral sensitivities, but g(s;)<1
for i=1,2,3,4. Such a system could provide perfect color
scanning, although the individual ¢ factor would not be
high.

Let S denotes the matrix of r scanning spectral
sensitivities, S=[s; s, ... s,]. Let A=[a, a, ... a,] denote the
human visual space (color matching functions) to be
approximated. An orthonormal basis for A is defined by
U=[u, u, ... u,]. Such a basis may be obtained by the Gram-
Schmidt orthogonalization procedure. The number of
orthonormal vectors, ¢, is the rank of A and o equals s if A
is a linearly independent set. Similarly, an orthonormal
basis for S is defined by O=[0, 0, ... o4]. Also notice that j3
is the rank of S and that 8 equals r if S is linearly
independent set. The orthonormal basis U and O need not
represent realizable spectral sensitivities. It can be derived
that S(S7S)™'S” = 00" and A(ATA)'AT = UU".°

Our purpose is to approximate A by the linear
combination of S, that is, to minimize |A - S@Q)| +2, where Q
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is the variable matrix to be optimized. This is a least-square
issue as well. Similarly, we can obtain Q = (S”S)"'S"A by
pseudo inverse operation. And the residue:

iq(oi)
Hy ()= ——= 11, (0)

Therefore,

A Trace{A"A}-Trace{A"s(5"5)"' 5" A}

IA]> Trace{A” A}

. Trace{A"s(s"5)"'s" A}

Trace{ATA}

=1-11,(9)

where

Tmce{ATS(STS)“ STA}
Trace{ATA}

14 ()= 3

is the goodness measure of a set of ss S against A, and
Trace{X} is the sum of diagonal elements of X. When we
use the orthonormal vectors U instead of A, we have

Trace{UTU} =Trace{l,} =,
Trace{U"S(S"$)™ $"U} = Trace{U" 007U}
=Jo"u| =u" o[ = Tracefo"vu" 0} @
= i”iTUUTOi = i‘Z(Oi)
i=1 i=1
SO

B
Trace{OTUUTO} Z}‘ q(0;)
Uy (S) = ==
o a

= Hy(0) (5)

which is the definition of y-factor for a set of SS .
This equation can be rewritten as:

Trace{OTUUTO} B Trace{STUUTS~(STS)’1}

Hy(8)= p”

(6)
Trace{STA(ATA)"'ATS-(STS)"I}

o

In this equation, Qs = STUU’S is the g-factor matrix
(diagonal elements are g-factors of original ss, off-diagonal
elements are inter-product pseudo g-factors), p = S'S is the
correlation between the original spectral sensitivities. The
operation p~' = (S7S)™ is a de-correlation process, that is, it
remove the correlation between the set of spectral
sensitivies, and obtain a "pure" uncorrelated (orthonormal) ss
to calculate the goodness measure. Hence, we see that

r o
Y g(m;) cannot be used instead of Y g(0,)

i=1 i=1
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as a measure because spectral sensitivities with high value
of correlation

for i #j may have high g-factors but poor joint performance.
Ensuring that the spectral sensitivities O are orthogonal
removes the correlation effect

for i #j.

Table 1. Peak positions of ss with maximal u-
factor at different width

Width | u-factor| Blue ss peak| green ss peak| red ss peak
(nm) (m) (nm) (nm)
10 0.380 450 540 600
20 0.713 450 540 600
30 0.895 450 540 600
40 0.965 450 540 600
50 0.978 450 540 600
60 0.963 450 540 600
70 0.935 460 540 600
80 0.901 470 530 600
90 0.865 490 510 600
100 | 0.824 490 510 600

Evaluation on a Set of Hypothetical
Spectral Sensitivities with u-Factor

Now we employ the aforementioned hypothetical spectral
sensitivities to evaluate their p-factor. There are three
spectral sensitivities denoted as R, G and B with peaks A,
locating at 600-700nm, 500-600nm and 400-500nm by
10nm individually. Considering their mutual combinations,
we have totally 11°=1331 sets of spectral sensitivities. We
also vary their width 2w so as to check its influence on the
measure of goodness. We let w changes from 10am to
100nm by 10nm, which generates totally 10x1331
combinations to be verified. We can obtain three peak
positions of R, G and B with maximal p-factor among the
1331 indexed combinations for each width. We found the
maximal p-factor locates almost always at coded index=50,
that is, the corresponding peak position of R spectral
sensitivity function is at 600nm, that of G spectral
sensitivity function is at 540nm, and that of B spectral
sensitivity function is at 450nm (Table 1). This result is
consistent with the properties of ¢ factor of a series of
spectral sensitivities. Three spectral sensitivities with high
g-factors own high p-factor if they are uncorrelated as
possible as they can. Some second smaller peaks give other
combinations of spectral sensitivities that have
comparatively high u-factors, but these peaks are very close
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to the above three principle peaks, for example, {610nm,
530nm, 460nm} etc.

As we noted above, p-factor is the sum of g-factor of
orthogonal sensitivities. The width of the spectral
sensitivities affects their p-factor. There exists an optimal
width for the maximum u-factor when peak positions are
fixed. Very interestingly, here again (Figure 5), the optimal
width w=50nm with corresponding p-factor=0.9779.

When the peak positions and widths of two spectral
sensitivities are fixed, and only one SS changes its peak
position, how does the pi-factor change? Since p-factor is an
extension of g factor, the peak position should be consistent
with that of g factor. Figure 6 shows that it’s correct. We let
one SS change its A,, say, 400-500nm by 10nm, the other
two fix their peak positions and width when we obtain the
maximum p-factor (540nm, 600nm, and width=50nm).
These figures graphically describe the behavior of i factor of
changing single SS just like that of g-factor. The peak
positions of SS with maximum g-factor locate at about A, =
450nm, 530~540nm, and 600~610nm.

1

Peak p-factor

—o_ peak positions: 450-540-600nm
0.2 - sa— peak positions: 450-550-600nm
_&_ peak positions: 450-530-600nm

20 40 60 80 100

Figure 5. Effect of width of SS on peak U-factor Optimal width is
about w=45-55nm

More Discussion on p-Factor

It is expected that the color filters and its number affect the
accuracy of recording an original image. The use of more
than three filters in the recording process is an alternative
approach when three filters cannot span the human visual
space effectively (low u-factor) because of cost or
manufacturing difficulty. The following simulated example
demonstrates how a fourth filter dramatically improve the u-
factor of a camera. The three hypothetical spectral
sensitivities have width 50nm with peak positions 650nm,
550nm and 450nm individually. Its p-factor is 0.742. We let
the fourth hypothetical spectral sensitivity changes peak
positions from 400nm to 700nm by 10nm, and width from
10nm to 100nm by 10nm, there are 310 combinations. We
find the maximal p-factor of the four-channel system is
0.973, and the fourth filter has width of 60nm and peak
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position of 590nm. The corresponding g-factors of the four
spectral sensitivities are 0.953, 0.982, 0.297 and 0.997
respectively.
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Figure 6. U-factor of a set of ss: one ss changes peak \,, the

other two ss fix peak A, that is, change one of (450nm, 540nm,
600nm) by 10nm and vary width from 10nm to 100nm by 10nm
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3-ss: width=50nm; peak:650nm,550nm,450nm
3-ss: p-factor=0.74219
4-ss: u-factor=0.97306
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Figure 7. Chooing a fourth spectral sensitivity

Since p-factor is not based on a perceptually uniform
color space, such as L'a’h”, a high p-factor doesn’t always
lead to a small L’a"b" error. But the average L'a’b” error over
an ensemble of reflectance is usually highly correlated with
the u-factor of the camera system.” On the other hand, some
research indicates that the condition p-factor=1 is a sufficient
condition but not a necessary one for color reproduction,’
therefore some color imaging devices with poor u-factor can
generate a good image reproduction. Another issue of u-
factor is that it doesn’t consider the measurement noise,
which exists in real world and may contaminate the output
signal thus lead to a big color difference in measurement.
And finally, with the development of multi-spectral imaging
system, a measure of goodness to evaluate its quality is
desired.’
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Conclusion

The metrics of goodness of spectral sensitivities including
Neugebauer’s g-factor for single SS and Vora et al’s p-factor
for a set of S§ were analyzed in the paper based on least
square approach. Hypothetical spectral sensitivities with
peak position and width varied were evaluated on these
criteria. The disadvantage of g-factor has been overcome by
p-factor. But the latter has the disadvantage of without
considering practical issues such as measurement noise and
it is not based on a perceptual uniform color space.
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